Math, asked by lakshinkumar5788, 1 year ago

for what value of k the pair of equations kx -4y=3,6x-12y=9has infinite number of solutions

Answers

Answered by KanikAb
26
kx-4y=3......¡
6x-12y=9....¡¡

If it has infinite number of solutions then
a1/a2=b1/b2=c1/c2

a1/a2=b1/b2

=>k/6=4/12

=>12k=24

=>k=24/12

=>k=2

b1/b2=c1/c2

=>4/12=3/9

=>1/3=1/3

Therefore the value of k is 2
Answered by Anonymous
11

\huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\huge{\underline{\bf{Given \: :}}}

⟹ kx - 4y = 3

⟹ 6x - 12y = 9

______________________________________

\huge{\underline{\bf{To \: Find \: :}}}

Value of k.

_______________________________________

\huge{\underline{\bf{Solution \: :}}}

\sf \rightarrow {\frac{a_{1}}{a_{2}}}  =  \sf{\frac{b_{1}}{b_{2}}}  =  \sf  {\frac{c_{1}}{c_{2}}}   \\  \\  \sf \rightarrow { \frac{k}{6}  =  \frac{ \cancel{ - 4}}{  \cancel{- 12}}} \\  \\  \sf \rightarrow { \frac{k}{6}  =  \frac{1}{3} } \\  \\  \sf \rightarrow {3k = 6} \\  \\  \sf \rightarrow {k =  \frac{ \cancel6}{ \cancel3} } \\  \\  \sf \rightarrow { k = 2}

\rule{200}{2}

\huge{\underline{\bf{Verification\: :}}}

 \sf{ \frac{ \cancel2}{\cancel6} =  \frac{\cancel{ - 4}}{ \cancel{- 12}}  =  \frac{\cancel3}{\cancel9}  } \\  \\  \sf{ \frac{1}{3}  =  \frac{1}{3}  =  \frac{1}{3} }

Hence Verified

Similar questions