Math, asked by dipika261019, 8 months ago

Form the quadratic equation whose roots are the squares of the sum of roots and square
of the difference of roots of the equation 2x^2 + 2(m + n)x + m^2+n^2=0​

Answers

Answered by Sharad001
263

Question :-

Form the quadratic equation whose roots are the squares of the sum of roots and square

of the difference of roots of the equation

2x² + 2(m+n)x + m² + n² = 0

Answer :-

→ x² - (4mn)x + (m² - n²)² = 0

To Find :-

→ A quadratic equation whose roots are square of the sum of roots and square of the difference of roots of given quadratic.

Solution :-

Let a and b are the roots of required quadratic equation,

→ a = square of the sum of roots of the given polynomial

→ b = square of the difference of roots of the given polynomial.

We have ,

→ 2x² + 2(m+n)x + m² + n² = 0

Hence ,

 \sf let \:  \alpha \: and \:  \beta \: are \: the \: roots \: of \: given \: \\  \sf polynomial  \\ \to \sf sum \: of \: roots \:  =  -  \frac{coefficient \: of \: x}{ coefficient \: of \:  {x}^{2} }  \\  \\  \to \sf \alpha +  \beta =  -  \frac{2(m + n)}{2}  \\  \\  \to \boxed{ \sf \alpha +  \beta \:  =  - (m + n)} \\  \\  \sf \: product \: of \: roots \:  = \frac{constant \: }{ coefficient \: of \:  {x}^{2} } \\  \\  \to   \boxed{\sf\alpha \beta \:  =  \frac{ {m}^{2} +  {n}^{2}  }{2} }

Hence ,

 \to \sf \: a =  { (\alpha +  \beta)}^{2}  \\  \\  \to \sf \:  a =  { \{ - (m + n) \}}^{2}  \\  \\  \to \boxed{ \sf \: a =  {(m + n)}^{2} } \\  \\ \bf and \:  \\  \to \sf \: b =  {( \alpha -  \beta)}^{2}  \\  \\  \to \sf  b =   {( \alpha  +  \beta)}^{2}  - 4 \alpha \beta \\  \\  \to  \sf \: b =  {(m + n)}^{2}  - 2( {m}^{2}  +  {n}^{2} ) \\  \\   \to \sf \: b =  {m}^{2}  +  {n}^{2}  + 2mn \:  - 2 {m}^{2}  - 2 {n}^{2}  \\  \\  \to \sf \:  \boxed{ \sf \: b =  -  {(m - n)}^{2} }

hence , required equation is

→ x² - (a + b)x + ab = 0

  \sf \: hence \:   a + b =  {(m + n)}^{2}   -  {(m - n)}^{2}  \\  \\  \to \sf \: a  + b =  {m}^{2}  +  {n}^{2}  + 2mn -  {m}^{2}  -  {n}^{2}  + 2mn \\  \\  \to \boxed{ \sf a + b = 4mn} \\  \\  \sf \: and \:  \\ \to \sf ab =   - {(m + n)}^{2}  {(m - n)}^{2}  \\  \\  \to  \boxed{\sf \: ab =  {( {m}^{2} -  {n}^{2}  )}^{2} }

→ x² - (4mn)x + (m² - n²)² = 0

Answered by TanmayNema
0

Answer:

x²-4mnx+(m²-n²)²=0

Formula Used;

(i) α+β=(-b/a)

(ii) α-β=√b²-4ac/|a| ..[From (α-β)²=(α+β)²-4(αβ)]

(iii) QE: x²-(Sum Of Zeroes)x+(Product Of Zeroes)

Here Is Your Solution-

•According To Question;

(i) α and β, Roots Of Given Equation!

(ii) (α+β)² and (α-β)², Roots Of Finding Equation!

(i) We Have; 2x²+2(m+n)x+(m²+n²)=0

• (α+β)=(-b/a)

(α+β)=[-2(m+n)]/2

(α+β)=[-(m+n)]

(α+β)²=(m+n)²

(ii) (α-β)=[√b²-4ac/2a]

(α-β)=[√{2(m+n)}²-4(2)(m²+n²)]/|2|

(α-β)=[√4(m²+n²+2mn)-8(m²+n²)]/2

(α-β)=[√(4m²+4n²+8mn-8m²-8n²)]/2

(α-β)=2[√(-m²-n²+2mn)]/2

(α-β)²= √{-(m-n)²}²

(α-β)²= -(m-n)²

(iii) Now;

Q.E.: x²-[(α+β)²+(α-β)²]x+[(α+β)²(α-β)²]=0

x²-[(m+n)²-(m-n)²]x+[(m+n)(m-n)]²=0

x²-[m²+n²+2mn-m²-n²+2mn]x+[m²-n²]²=0

x²-[4mn]+[m²-n²]²=0

Therefore; x²-4mnx+(m²-n²)²=0

Hope It Helps!

Similar questions