Math, asked by shonya8544, 1 year ago

from a solid cylinder of height 30 cm and radius 7 cm a conical cavity of height 24cm and base radius 7 cm is drilled out.Find Volume and the Total Surface area of remaining solid

Answers

Answered by InesWalston
24

Solution-

1. Volume

V_{\text{remaining solid}}=V_{\text{cylinder}}-V_{\text{cone}}

V_{\text{remaining solid}}=[\pi\times (\text{base radius})^2\times \text{height}}]-[\pi\times(\text{base radius})^2\times \frac{\text{height}}{3}]

Putting the values,

\Rightarrow V_{\text{remaining solid}}=(\pi\times 7^2\times 30)-(\pi\times 7^2\times\frac{24}{3})

\Rightarrow V_{\text{remaining solid}}=(\pi\times 49\times 30)-(\pi\times 49\times 8)

\Rightarrow V_{\text{remaining solid}}=\pi\times 49\times 22

\Rightarrow V_{\text{remaining solid}}=3386.6\ cm^3

2. Surface Area

A_{\text{remaining solid}}=A_{\text{curved area of cylinder}}+A_{\text{area of base circle}}+A_{\text{curved area of cone}}

A_{\text{remaining solid}}=(2\pi\times \text{base radius}\times \text{height})+(\pi \times (\text{base radius})^2)+(\pi\times \text{base radius}\times \text{slant height})

Putting the values,

\Rightarrow A_{\text{remaining solid}}=(2\pi\times 7\times 24)+(\pi\times 7^2)+(\pi \times 7\times \sqrt{24^2+7^2})

\Rightarrow A_{\text{remaining solid}}=(2\pi\times 7\times 24)+(\pi\times 49)+(\pi \times 7\times 25)

\Rightarrow A_{\text{remaining solid}}=336\pi+49\pi+175\pi

\Rightarrow A_{\text{remaining solid}}=560\pi

\Rightarrow A_{\text{remaining solid}}=1759.3\ cm^2


Similar questions