Math, asked by and57, 1 year ago

function help me friends.... [f(x)]^3=?

Attachments:

Answers

Answered by samrat00725100
1

 \displaystyle f(x) = x + \frac{1}{x}

 \displaystyle \therefore [f(x)]^3 = (x + \frac{1}{x})^3

 \displaystyle [f(x)]^3 = x^3 + \frac{1}{x^3} + 3\cdot x^2 \cdot \frac{1}{x} + 3 \cdot x \cdot \frac{1}{x^2}

 \displaystyle [f(x)]^3 = x^3 + \frac{1}{x^3} + 3x + \frac{3}{x}

 \displaystyle [f(x)]^3 = \{ x^3 + \frac{1}{x^3} \} + 3 \cdot \{ x + \frac{1}{x} \}

 \displaystyle \therefore [f(x)]^3 = f(x^3) + 3 \cdot f(x)

 \displaystyle \text{The function } f(x) \text{ is a function such that } f(x) = f(\frac{1}{x})

 \displaystyle \therefore \text{ The answer is (a) } f(x^3) + 3f(\frac{1}{x})

Similar questions