Math, asked by rashidayadalli9516, 1 year ago

G={2,4,6,8} wrt multiplication under the modulo 10. Find its inverse law

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{G=\{2,4,6,8\}\;with\;respect\;to\;multiplicaation\;modulo\;10}

\textbf{To find:}

\textsf{Inverse law}

\textbf{Solution:}

\textsf{First, we construct Cayley's table to find inverses of each element}

\begin{array}{|c|c|c|c|c|}\cline{1-5}{\times}_{10}&2&4&6&8\\\cline{1-5}2&4&8&2&6\\\cline{1-5}4&8&6&4&2\\\cline{1-5}6&2&4&6&8\\\cline{1-5}8&6&2&8&4\\\cline{1-5}\end{array}

\mathsf{Consider,}

\mathsf{2\;{\times}_{10}\;6=2}

\mathsf{4\;{\times}_{10}\;6=4}

\mathsf{6\;{\times}_{10}\;6=6}

\mathsf{8\;{\times}_{10}\;6=8}

\implies\textsf{6 is the identity element}

\mathsf{Also,}

\textsf{Inverse of 2 is 6}

\textsf{Inverse of 4 is 4}

\textsf{Inverse of 6 is 6}

\textsf{Inverse of 8 is 2}

\textsf{Hence, Inverse law is verified}

\textbf{Find more:}

In a Group Z11 under multiplication operation the

inverse of 9 is​

https://brainly.in/question/34682234

Find out the multiplicative inverse of 11 in z27

https://brainly.in/question/34877784

Similar questions