Math, asked by gangabhorkade0406, 9 months ago

give step by step answer for the attachment above​

Attachments:

Answers

Answered by BrainlyTornado
5

QUESTION:

PROVE:

 \displaystyle \frac{ \tan \theta}{ 1 -  \cot \theta}  +  \frac{ \cot\theta}{ 1 -  \tan \theta}  =  \sec \theta \csc \theta + 1

GIVEN:

\displaystyle \frac{ \tan \theta}{ 1 -  \cot \theta}  +  \frac{ \cot\theta}{ 1 -  \tan \theta}  =  \sec \theta \csc \theta + 1

TO PROVE:

\displaystyle \frac{ \tan \theta}{ 1 -  \cot \theta}  +  \frac{ \cot\theta}{ 1 -  \tan \theta}  =  \sec \theta \csc \theta + 1

FORMUALE:

★ tan ∅ = sin ∅ / cos ∅

★ cot ∅ = cos ∅ / sin ∅

★ sin² ∅ + cos² ∅ = 1

★ X³ - Y³ = ( X - Y)(X² + XY + Y²)

★ 1 / cos ∅ = sec ∅

★ 1 / sin ∅ = cosec ∅

PROOF:

 \displaystyle \frac{ \tan \theta}{ 1 -  \cot \theta}  +  \frac{ \cot\theta}{ 1 -  \tan \theta}  =  \sec \theta \csc \theta + 1 \\  \\ \\    \frac{\frac{ \sin \theta}{ \cos \theta} }{1 -  \frac{ \cos \theta}{ \sin\theta} }  + \frac{\frac{ \cos \theta}{ \sin \theta} }{1 -  \frac{ \sin \theta}{ \cos \theta} }  \\  \\  \\ \frac{\frac{ \sin \theta}{ \cos \theta} }{\frac{ \sin \theta -  \cos \theta}{ \sin\theta} }+ \frac{\frac{ \cos \theta}{ \sin \theta} }{ \frac{ \cos \theta - \sin \theta}{ \cos \theta} }  \\  \\   \\ \frac{ { \sin}^{2}  \theta}{ \cos \theta( \sin \theta  - \cos \theta)}  + \frac{ { \cos}^{2}  \theta}{ \sin \theta( \cos\theta  - \sin\theta)} \\  \\ \\ \frac{ { \sin}^{2}  \theta}{ \cos \theta( \sin \theta  - \cos \theta)}   - \frac{ { \cos}^{2}  \theta}{ \sin \theta( \sin\theta  - \cos\theta)} \\  \\ \\  \frac{ { \sin}^{3}  \theta - { \cos}^{3}  \theta}{ \sin \theta \cos \theta( \sin \theta -  \cos \theta)} \\  \\ \\ \frac{ (\sin \theta -  \cos \theta)( \sin^2 \theta +  \sin \theta  \cos \theta +  \cos^2 \theta)}{\sin \theta \cos \theta( \sin \theta -  \cos \theta)}  \\  \\ \\ \frac{( \sin^2\theta +\cos^2 \theta +   \sin \theta  \cos \theta )}{\sin \theta \cos \theta} \\  \\  \\ \frac{1 +  \sin \theta \cos \theta}{\sin \theta \cos \theta}  \\ \\ \\  \frac{1}{\sin \theta \cos \theta}  +  \frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}  \\  \\  \sec \theta \csc \theta + 1  \\  \\ \\ \fbox{ \bf{HENCE \: PROVED}}

Answered by Anonymous
5

Step-by-step explanation:

⭐AnswEr:⭐

consider LHS:

 \frac{ \tan(θ) }{1 -  \cot(θ) }  +  \frac{ \cot(θ) }{1 - tanθ}

 =  \frac{tanθ}{1 -  \frac{1}{tanθ} }  +  \frac{ \frac{1}{tanθ} }{1 - tanθ}

 =  \frac{ \frac{tanθ}{tanθ - 1} }{tanθ}  +  \frac{1}{tanθ(1 - tanθ)}

 =  \frac{ {tan}^{2}θ }{tanθ - 1}  +  \frac{1}{tanθ(1 - tanθ)}

 =  \frac{ - tan ^{2} θ}{1 - tanθ}  +  \frac{1}{tanθ(1 - tanθ)}

 =  \frac{ { - tan}^{3} θ + 1}{tanθ(1 - tanθ)}

 =  \frac{1 - tan ^{3}θ }{tanθ(1 - tanθ)}

 =  \frac{(1 - tanθ)(1 + tan ^{2}θ + tanθ) }{tanθ(1 - tanθ)}

 =  \frac{ { \sec }^{2}θ }{ \tanθ }  +  \frac{tanθ}{tanθ}

 =  {sec}^{2} θcotθ = 1

 =  \frac{1}{ {cos}^{2} θ}  \times  \frac{cosθ}{sinθ}  + 1

 =  \frac{1}{cososinθ}  + 1

 = 1 + secθcosecθ

HENCE PROVED

Similar questions