Give the Result please
Answers
EXPLANATION.
⇒ ∫[sec(x).tan(x)]dx.
As we know that,
Formula of :
⇒ ∫sec x tan x dx = sec x + c.
Using this formula in equation, we get.
⇒ ∫[sec(x).tan(x)]dx = sec(x) + c.
Proof :
⇒ ∫[sec(x).tan(x)]dx.
⇒ ∫1/cos(x).sin(x)/cos(x) dx.
⇒ ∫sin(x)dx/cos²x.
By using substitution method, we get.
Let we assume that,
⇒ cos(x) = t.
Differentiate w.r.t x, we get.
⇒ - sin(x)dx = dt.
Using this formula in equation, we get.
⇒ ∫- dt/t² = -(-1/t) + c.
⇒ 1/t + c.
Put the value of t = cos(x) in equation, we get.
⇒ 1/cos(x) + c = sec(x) + c.
MORE INFORMATION.
Standard integrals.
(1) = ∫0.dx = c.
(2) = ∫1.dx = x + c.
(3) = ∫k dx = kx + c, (k ∈ R).
(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ - 1).
(5) = ∫dx/x = ㏒(x) + c.
(6) = ∫eˣdx = eˣ + c.
(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.
Solution:
We can integrate it easily,
Now we can you substitution method,
Since the derivative of sec (x) is
Now the integral of,
Then the answer is,
Final answer:
is the final result.