Math, asked by mmsramakrishna2006, 7 months ago

given a+b+c=9 and ab+bc+ca=26 find a^2+b^2+c^2=29​

Answers

Answered by Mister360
26

Step-by-step explanation:

Given:'

{:}\longrightarrow a+b+c=9

{:}\longrightarrowab+bc+ca=26

{:}\longrightarrow {a}^{2}+{b}^{2}+{c}^{2}=29

Solution:-

a+b+c=9

{:}\longrightarrow{a+b+c}^{2}={9 }^{2}

{:}\longrightarrow{a}^{2}+{b}^{2}+{c}^{2}+2ab+2bc+2ca=81

{:}\longrightarrow29+2(ab+bc+ca=81

{:}\longrightarrow29+2 (26)=81

{:}\longrightarrow29+52=81

{:}\longrightarrow{a}^{2}+{b}^{2}+{c}^{2}+52=81

{:}\longrightarrow{a}^{2}+{b}^{2}+{c}^{2}=81-52

{:}\longrightarrow{\underline{\boxed {\sf{{a}^{2}+{b}^{2}+{c}^{2}=29}}}}

Hence verified

Extra information:-

used formula:-

{a+b+c}^{2}={a}^{2}+{b}^{2}+{c}^{2}+2ab+2bc+2ca

Answered by Anonymous
0

Answer:

29.

Step-by-step explanation:

a + b + c = 9

Squaring on both the sides,

(a + b + c)² = (9)²

Since, (a + b + c)² = a² + b² + c² + 2(ab + bc + ca),

a² + b² + c² + 2(ab + bc + ca) = 81

Substituting ab + bc + ca = 26 in the equation,

a² + b² + c² + 2(26) = 81

a² + b² + c² = 81 - 52

Thus, a² + b² + c² = 29

Hope this helps you :)

Similar questions
Math, 1 year ago