Math, asked by nandini73, 1 year ago

given cos theta is equals to 21 by 29 determine the value secant theta by tan theta + cot theta

Attachments:

TBNRFrags2311: sinx
cutygirl47: hii

Answers

Answered by khader7
46
cos theta=21/29
cos theta=adjacent/hypotenuse
adjacent=21
hypotenuse=29
opposite side=20
so,
Tan theta=opp/adj=20/21 and cot theta=adj/opp=21/20
sec theta=hypotenuse/adj=29/21
therefore,tan theta+cot theta/sec theta=

20/21+21/20/29/21

=29/20
Answered by fanbruhh
87
 \huge \bf{ \red{hey}}

 \huge{ \blue{ \mathfrak{here \: is \: answer}}}

 \bf{given - }

 \bf{cos \theta = \frac{21}{29}}

hence

 \bf{\cos \theta \: = \frac{base}{hypotenuse}}

hence in triangle

base= 21 units

and

hypotenuse=29 units

hence

perpendicular
 = \sqrt{hypotenuse ^{2} -base ^{2} }

 = \sqrt{29^{2} - 21 ^{2} }
 = \sqrt{841 - 441}
 = \sqrt{400}

 \bf{20 \: units}

hence

 \bf{ \frac{sec \theta}{tan \theta + cot \theta}}

 \bf{sec \theta = \frac{hypotenuse}{base}}
hence

 \bf{sec \theta = \frac{29}{21}}

 \bf{ tan \theta = \frac{prependicular}{base}}

 \bf{tan \theta = \frac{20}{21}}
and

 \bf{cot \theta = \frac{base}{perpendicular}}

 \bf{cot \theta = \frac{21}{20}}
for more calculations

 \bf{see \: in \: pic}

 \huge \boxed{\boxed{ \red{hope \: it \: helps}}}
 \huge{ \mathfrak{ \blue{thanks}}}
Attachments:

BrainlyPrincess: @sonyshing don't comment unnecessarily here
sonyshing: ok
Similar questions