Math, asked by Frust, 10 months ago

Given Equilateral triangle ABC with interior point D if the perpendicular distances from D to the sides of 4, 5 and 6 the sum of all numbers so formed is.?

Answers

Answered by sahildhande987
195

\huge{\underline{\sf{\red{Answer}}}}

_____________________________

Given:

ABC is an Equilateral Triangle

D is a point inside the triangle

Perpendicular Distances

\perpendicular A = 4 \:,\perpendicular B =6 \: , \perpendicular C = 5

Formula

  • Area of Triangle = ½ x b x h
  • Area of Equilateral Triangle = \dfrac{\sqrt3 a^2}{4}

SoluTion:

Area of ABC = ½ x 4 + ½ x a x 5 +½ x a x 6

 \implies \dfrac{a}{2} ( 4+5+6) \\ \implies \dfrac{15a}{2}

now applying the 2nd Formula

Equilateral Triangle =

\dfrac{\sqrt3 a^2}{4} \\ \leadsto \dfrac{15\cancel a}{\cancel2}=\dfrac{\sqrt3 \cancel {a^2}}{\cancel4} \\ a = \dfrac{30}{\sqrt3}

Area of Triangle

Putting value of a in Formula

\dfrac{\sqrt3}{4} bigg( \dfrac{30}{\sqrt3}\bigg)^2 \\ \implies \dfrac{\sqrt3}{\cancel 4} \times \dfrac{\cancel{900}}{\cancel3}

\large{\boxed{Area = 75\sqrt3}}}

Answered by RvChaudharY50
45

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  • perpendicular distance From Point D to the sides of Equilateral ∆ are 4, 5 and 6 cm...

{\large\bf{\mid{\overline{\underline{Correct\:Question}}}\mid}}

  • we have to Find Area of Equilateral ∆ .

\Large\underline{\underline{\sf{Solution}:}}

\large\underline\textbf{Refer To Image First.}

\LARGE\bold\star\underline{\underline\textbf{Formula\:used}}

  • Area of ∆ = 1/2 × Base × Height
  • Area of Equilateral ∆ = √3/4 (a)² where a = sides of Equilateral ∆ ..

From image we can see that, we have 3 's inside Equilateral ABC .

→ Area ∆ADB = 1/2 × a × 4 = 2a

→ Area ∆BDC = 1/2 × a × 6 = 3a

→ Area ∆ADC = 1/2 × a × 5 = 2.5a

Area ABC = Area ∆ADB + Area ∆BDC + Area ∆ADC

Area ∆ABC = 2a + 3a + 2.5a = 7.5a ------ Equation (1)

____________________________

Now, Area of ∆ABC also = (√3/4)a² -----Equation(2)

 \red{Putting \:  both  \: Equal  \: we  \: get,,}

7.5a =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\  \implies \: a \:  =  \frac{7.5 \times 4}{ \sqrt{3} }  \\  \\ \implies \: a =  \pink{10 \sqrt{3}}

_______________________

 \textbf{Hence, Area of  ABC} =  \\  \\  \implies \: \green{  \frac{ \sqrt{3} }{4} ( {10 \sqrt{3}) }^{2}}  \\  \\ \implies \orange{ \frac{300 \sqrt{3} }{4} } \\  \\ \implies \:  \red{75 \sqrt{3}} \:  {cm}^{2}

\large\underline\textbf{Hope it Helps You.}

Attachments:
Similar questions