Math, asked by atharvabs02, 9 months ago

Given set aN= {ax, x belongs to N, a is a constant natural number}. Describe the set 4N intersection 6N?​

Answers

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

aN =  \{ \: ax :   x \in \: N\:  \:  \}

TO DETERMINE

4N  \: \cap \: 6N

CALCULATION

From above definition

4N =  \{ \: 4x :  x \in \: N \:  \}

 \implies \: 4N \:  =  \{ \: 4 , 8  , 12 , 16 , 20 , 24 , 28 , .......\}

Again

 \: 6N \:  =  \{  \:6 x  : x \in \: N   \: \}

 \implies \: 6N \:  =  \{ \: 6 , 12  , 18 , 24 , 30 ,  .......\}

So

 4N  \: \cap \: 6N \:  =  \{ \: 12 ,  24 , .......\}

Hence

4N  \: \cap \: 6N = 12N

RESULT

 \boxed{ \:  \: 4N  \: \cap \: 6N = 12N \: }

Answered by aashrayjain137
0

Answer:

answer is given in picture

Attachments:
Similar questions