Math, asked by ayapillasarada, 19 days ago

Given tan (a+b) = 1and.tan (a_b) =1/7.find.tan a and. Tan b

Answers

Answered by bhushanbhagi6
0

Answer:

tan

a

=

2

,

1

2

;

&

tan

b

=

3

,

1

3

.

Explanation:

METHOD I

Let

tan

a

=

x

,

tan

b

=

y

.

Given that,

tan

(

a

+

b

)

=

1

tan

a

+

tan

b

1

tan

a

tan

b

=

1

x

+

y

=

1

x

y

...

(

1

)

Similarly,

tan

(

a

b

)

=

1

7

x

y

=

1

7

(

1

+

x

y

)

...

...

...

.

(

2

)

(

1

)

+

(

2

)

2

x

=

8

7

6

7

x

y

,

or,

x

=

4

7

3

7

x

y

,

i.e.,

x

(

1

+

3

7

y

)

=

4

7

,

giving,

x

=

4

7

+

3

y

.

We submit this

x

in

(

1

)

to see that.

4

7

+

3

y

+

y

+

(

4

7

+

3

y

)

y

=

1

,

or,

4

+

7

y

+

3

y

2

+

4

y

=

7

+

3

y

,

i.e.,

3

y

2

+

8

y

3

=

0

.

Hence,

y

=

tan

b

=

3

,

1

3

.

Using

x

=

4

7

+

3

y

,

we get,

x

=

tan

a

=

2

,

1

2

.

tan

a

=

2

,

1

2

;

tan

b

=

3

,

1

3

.

Explanation:

METHOD II:-

Take,

a

+

b

=

C

,

a

b

=

D

,

then, by what is given,

tan

C

=

1

,

tan

D

=

1

7

...

(

1

)

Observe that,

C

+

D

=

2

a

.

C

+

D

=

2

a

.

tan

(

C

+

D

)

=

tan

2

a

.

tan

C

+

tan

D

1

tan

C

tan

D

=

tan

2

a

Here, we use

(

1

)

to get,

1

+

1

7

1

1

7

=

tan

2

a

,

or,

tan

2

a

=

4

3

.

.

(

2

)

Recall that

tan

2

a

=

2

tan

a

1

tan

2

a

...

...

.

.

(

3

)

.

so, if,

tan

a

=

x

,

(

2

)

&

(

3

)

2

x

1

x

2

=

4

3

,

3

x

=

2

2

x

2

,

2

x

2

+

3

x

2

=

0

,

(

x

+

2

)

(

2

x

1

)

=

0

,

x

=

tan

a

=

2

,

1

2

,

.

as in METHOD I!

tan

b

can similarly be obtained using

C

D

=

2

b

.

Answered by preetigupta0408
0

Answer:

tan a = -2, 1/2

tan b = -3, 1/3

Attachments:
Similar questions