Math, asked by abdulrasheed432, 9 months ago

Given that:
(1+cosα)(1+cosβ)(1+cosγ)=(1-cosα)(1-cosβ)(1-cosγ)
Show that one of the values of each member of this equality is sinα sinβ sinγ

Answers

Answered by amitnrw
2

sinα sinβ sinγ is one of the values of each member of this equality

Step-by-step explanation:

(1+cosα)(1+cosβ)(1+cosγ)=(1-cosα)(1-cosβ)(1-cosγ)

LHS = (1+cosα)(1+cosβ)(1+cosγ)

= 2Cos²(α/2)2Cos²(β/2)2Cos²(γ/2)

= 8Cos²(α/2)Cos²(β/2)Cos²(γ/2)sinα sinβ sinγ/sinα sinβ sinγ

= 2Cos²(α/2)Cos²(β/2)Cos²(γ/2)sinα sinβ sinγ/2sin(α/2)Cos(α/2) 2sin(β/2)Cos(β/2)2sin(γ/2)Cos(γ/2)

= Cot(α/2)Cot(β/2)Cot(γ/2)sinα sinβ sinγ

RHS = (1-cosα)(1-cosβ)(1-cosγ)

= 2Sin²(α/2)2Sin²(β/2)2Sin²(γ/2)

= 8Sin²(α/2)Sin²(β/2)Sin²(γ/2)sinα sinβ sinγ/sinα sinβ sinγ

= 8Sin²(α/2)Sin²(β/2)Sin²(γ/2)sinα sinβ sinγ/2sin(α/2)Cos(α/2) 2sin(β/2)Cos(β/2)2sin(γ/2)Cos(γ/2)

= Tan(α/2)Tan(β/2)Tan(γ/2)sinα sinβ sinγ

Cot(α/2)Cot(β/2)Cot(γ/2)sinα sinβ sinγ = Tan(α/2)Tan(β/2)Tan(γ/2)sinα sinβ sinγ

Hence sinα sinβ sinγ is one of the values of each member of this equality

Learn  more:

Prove the following ( sin x - cos x +1)/ (sin x + cos x - Brainly.in

https://brainly.in/question/12563868

prove that cos x + cos y whole square + sin x + sin y whole square ...

https://brainly.in/question/11061175

prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx

https://brainly.in/question/3338788

Similar questions