Math, asked by Nike4457, 9 months ago

If sinθ+cosθ=x prove that sin6θ+cos6θ=4-3(x²-1)²/4

Answers

Answered by MaheswariS
0

\textbf{Given:}

x=sin\,\theta+cos\,\theta

\text{squaring on both sides, we get}

\implies\,x^2=(sin\,\theta+cos\,\theta)^2

\implies\,x^2=1+2\;sin\,\theta\,cos\,\theta

\implies\,x^2-1=2\;sin\,\theta\,cos\,\theta...........(1)

\text{Now,}

sin^6\theta+cos^6\theta

=(sin^2\theta)^3+(cos^2\theta)^3

\text{Using,}

\boxed{\bf\,a^3+b^3=(a+b)^3-3ab(a+b)}

=(sin^2\theta+cos^2\theta)^3-3\,sin^2\theta\,cos^2\theta

=(sin^2\theta+cos^2\theta)^3-3\,sin^2\theta\,cos^2\theta(sin^2\theta+cos^2\theta)

=1^3-3\,sin^2\theta\,cos^2\theta(1)

=1-\frac{3}{4}(4\,sin^2\theta\,cos^2\theta)

=1-\frac{3}{4}(2\,sin\theta\,cos\theta)^2

=1-\frac{3}{4}(x^2-1)^2 \text{Using (1)}

=1-\displaystyle\frac{3(x^2-1)^2}{4}

=\displaystyle\frac{4-3(x^2-1)^2}{4}

\therefore\;\bf\,sin^6\theta+cos^6\theta=\frac{4-3(x^2-1)^2}{4}

Find more:

If sec theta+tan theta=x, obtain the values of sec theta,tan theta, sin theta

https://brainly.in/question/7660422#

Similar questions