Math, asked by shruti7888, 1 year ago

given that alpha + beta =90 degree show that square root cos alpha cosec beta - cos alpha sin beta= sin alpha

Answers

Answered by waqarsd
5

given \\  \alpha +   \beta  =  \frac{\pi}{2}  \\  \sqrt{ \cos( \alpha )  \csc( \beta )  -  \cos( \alpha ) \sin( \beta )  }  \\  =  \sqrt{ \frac{ \cos( \alpha ) }{sin( \beta )} -  \sin( \beta )  \cos( \alpha )  }  \\  =   \sqrt{ \frac{ \cos( \alpha ) -  { \sin( \beta ) }^{2}  \cos( \alpha )  }{ \sin( \beta ) } }  \\  =  \sqrt{ \frac{ \cos( \alpha ) (1 -  { \sin( \beta ) }^{2}) }{ \sin( \beta ) } }  \\  <  \alpha +   \beta  =  \frac{\pi}{2}  >  <  \sin( \alpha )   = \cos( \beta )  >  <  \sin( \beta )   = \cos( \alpha )  >  \\  \sqrt{ { \cos( \beta ) }^{2} }  \\  =  \cos( \beta )   \\  =  \sin( \alpha )
hope it helps
Similar questions