Math, asked by aksharanaga2007, 7 days ago

Given that cos2 θ − sin2 θ =

3/4
.
What is the value of cos θ?​

Attachments:

Answers

Answered by leisha5
11

Answer:

cos²a-sin²a=¾

cos²a-(1-cos²a)=¾

{sin²a+cos²a=1

therefore, sin²a=1-cos²a}

cos²a-1+cos²a=¾

cos²a+cos²a=¾+1

2cos²a=7/4

cos²a=⅞

cos a=√⅞=√7/√8

hence ans is d

Answered by pulakmath007
5

cos²θ − sin²θ = 3/4 , then the value of cos θ = √7/√8

Given : cos²θ − sin²θ = 3/4

To find : The value of cos θ

Solution :

Here it is given that

\displaystyle \sf{   {cos}^{2} \theta -  {sin}^{2}  \theta =  \frac{3}{4}  }

Now we have

\displaystyle \sf{   {cos}^{2} \theta -  {sin}^{2}  \theta =  \frac{3}{4}  }

\displaystyle \sf{ \implies  {cos}^{2} \theta - (1 -  {cos}^{2}  \theta )=  \frac{3}{4}  }

\displaystyle \sf{ \implies  {cos}^{2} \theta - 1  +  {cos}^{2}  \theta =  \frac{3}{4}  }

\displaystyle \sf{ \implies 2 {cos}^{2} \theta - 1  =  \frac{3}{4}  }

\displaystyle \sf{ \implies 2 {cos}^{2} \theta   =  \frac{3}{4} + 1  }

\displaystyle \sf{ \implies 2 {cos}^{2} \theta   =  \frac{3 + 4}{4}  }

\displaystyle \sf{ \implies 2 {cos}^{2} \theta   =  \frac{7}{4}  }

\displaystyle \sf{ \implies  {cos}^{2} \theta   =  \frac{7}{8}  }

\displaystyle \sf{ \implies  {cos}^{} \theta   = \sqrt{  \frac{7}{8}  }}

\displaystyle \sf{ \implies  {cos}^{} \theta   =  \frac{ \sqrt{ 7}}{ \sqrt{ 8}  }}

The value of cos θ = √7/√8

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions