Math, asked by queensp73, 10 months ago

Good night friends !! answer this !!
if alpha and beta are the zeroes of the polynomial p(x)=x²-5x+6,find the value of alpha⁴beta²+alpha²beta⁴​

#FOLLOW ME :)

Answers

Answered by Anonymous
3

Aɴꜱᴡᴇʀ

  \huge\sf{\fbox{\fbox{468}}}

_________________

Gɪᴠᴇɴ

 \sf{p(x) =  {x}^{2}  - 5x + 6}

_________________

ᴛᴏ ꜰɪɴᴅ

 { \alpha }^{4}  { \beta }^{2}  +   { \alpha }^{2}  { \beta }^{4}

_________________

Sᴛᴇᴘꜱ

 \sf{}p(x) =  {x}^{2}  - 5x + 6 \\  \sf{} =  {x }^{2} - 2x - 3x  + 6  \\  \sf{}x(x - 2) - 3(x - 2) \\  \sf{}(x - 3)(x - 2) \\  \sf{}x = 3 \: and \: x =  2

So the zeros of the polynomial are 3 and 2

 \sf{}so \:  \alpha  = 3 \\  \sf{} \beta  = 2 \\  \sf{}so \: sub \: this \: in \:  { \alpha }^{4}  { \beta }^{2}  +  { \alpha }^{2}  { \beta }^{4}

 \sf{}we \: get \: ( {3)}^{4} ( {2)}^{2}  + {(3)}^{2}  {(2)}^{4}  \\  \sf{} = (81 \times 4) +( 9  \times  16) \\  \sf{} = 468

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Answered by Anonymous
5

GIVEN:

\alpha \:and \:\beta are the zeroes if the polynomial.

i.e. p(x) =x^{2}-5x+6

TO FIND:

\alpha^{4}\beta^{2}+\alpha^{2}\beta^{4}

CONCEPT USED:

We can find it's zeroes by factorisation using middle term splitting.

★We can also find it's zeroes using standard formula

i. e. \dfrac{-b±\sqrt{b^{2}-4ac}}{2a}

of the equation in ax^{2}+bx+c form

ANSWER:

We would be using middle term splitting,

=>x^{2}-5x+6=0

=>x^{2}-3x-2x+6=0

=>x(x-3)-2(x-3)=0

=>(x-2)(x-3)=0

Hence x = 3,2

______________________________________

Now let,

\alpha= 2\:\:and\:\:\beta=3

So,

\alpha^{2}=2^{2}=4;

\alpha^{4}=2^{4}=16

&

\beta^{2}=3^{2}=9;

\beta^{4}=3^{4}=81

______________________________________

Therefore,

=\alpha^{4}\beta^{2}+\alpha^{2}\beta^{4}

=16×9+4×81

=144+324

=468

Hence \alpha^{4}\beta^{2}+\alpha^{2}\beta^{4}=468

\huge\orange{\boxed{\alpha^{4}\beta^{2}+\alpha^{2}\beta^{4}=468}}

Similar questions