guys please solve 17 ; 18;19
Answers
Q17. Since AB//CD,angle BAO=x....interior opp. Angle ,so in triangleBOA y+x=z.....by exterior angle property
A.17
Given:AB ll CD,
To Prove :z=x+y
Proof: In the given figure, AB llCD
So, y=<OCD
In Triangle OCD
<x+<y+<COD=180 [Angle Sum Property]
=> <COD=180-(x+y) .....................Eq.(1)
=> <COD+z=180 [Linear Pair]
From Eq.(1)
=>180-(x+y)+z=180
=> -(x+y)+z=180
So, x+y=z.
A.18
Let there be a isosceles triangle ABC, such that AB=AC.
So,<ABC=<ACB
It is given that the base angle is 15° more than the vertical angle,
So if we assume that <BAC=x
=> <ABC=<ACB=x+15
<ABC+<ACB+<BAC=180 [Angle sum Property]
Substituiting their values we get
=>x+x+15+x+15=180
=>3x+30=180
=>3x=150
So,x=50°=<BAC
=>x+15=65°=<ABC=<ACB.
A.19
Let there be a isosceles triangle ABC, such that AB=AC.
So,<ABC=<ACB
Let the base angle be x, => <ABC=<ACB=x
It is given that the vertical angle is twice the sum of its base angles,
So, <BAC=2(x+x)=4x
Now,<BAC+<ABC+<ACB=180 [Angle sum Property]
On substituiting their values we get,
=>x+x+4x=180
=>6x=180
=>x=30°
=> <ABC=<ACB=x=30°
<BAC=4*x=4*30=120°.
Thanks!!!