Math, asked by Anonymous, 4 months ago

guys plez answer this question......​

Attachments:

Answers

Answered by Anonymous
1

Answer:

The natural environment encompasses all living and non-living things occurring naturally, meaning in this case not artificial. The term is most often applied to the Earth or some parts of Earth.

Answered by suraj5070
231

 \huge{\boxed {\mathbb {QUESTION}}}

 Find\:an\: anti \:derivative\:(or \:integral)\:of the \\following\: functions\: by \:the\: method\: of\: inspection

 1)\:sin\:2x

 2)\:cos\:3x

 3)\:{e}^{2x}

 4)\:{(ax+b)}^{2}

 5)\:sin\:2x-4\:{e}^{3x}

 \huge{\boxed {\mathbb {ANSWER}}}

\huge {1)\:sin2x}

 The\: anti\: derivative\: of\: sin\: 2x\: is\: a\: function\: of\: x

 \implies \frac{d}{dx} (cos\:2x)=-2sin\:2x

 \implies sin\:2x=-\frac{1}{2}\frac{d}{dx} (cos\:2x)

 \implies {sin\:2x=\frac{d}{dx} (-\frac{1}{2} cos\:2x)}

 \therefore Anti\:derivative\:of\:sin\:2x\:is{\boxed {\boxed {(-\frac{1}{2} cos\:2x)}}}

_________________________________________

\huge{ 2)\:cos\:3x}

 The\: anti\: derivative\: of\: cos\: 3x\: is\: a\: function\: of\: x

 \implies \frac{d}{dx} (sin\:3x)=3cos\:3x

 \implies cos\:3x=\frac{1}{3}\frac{d}{dx} (sin\:3x)

 \implies cos\:3x=\frac{d}{dx}(\frac{1}{3} (sin\:3x)

 \therefore Anti\:derivative\:of\:cos\:3x\:is{\boxed {\boxed{(\frac{1}{3} (sin\:3x)}}}

_________________________________________

 \huge {3)\:{e}^{2x}}

 The\: anti\: derivative\: of\:{e}^{2x} \: is\: a\: function\: of\: x

\implies \frac{d}{dx} {e}^{2x}=2{e}^{2x}

 \implies {e}^{2x}=\frac{1}{2}\frac{d}{dx}({e}^{2x})

 \implies {e}^{2x}=\frac{d}{dx}(\frac{1}{2}{e}^{2x})

 \therefore Anti\:derivative\:of\:{e}^{2x}\:is{\boxed {\boxed{(\frac{1}{2}{e}^{2x})}}}

_________________________________________

 \huge {4)\:{(ax+b)}^{2}}

 The\: anti\: derivative\: of\:{(ax+b)}^{2} \: is\: a\: function\: of\: x

\implies \frac{d}{dx}{(ax+b)}^{2}=3a{(ax+b)}^{2}

 \implies {(ax+b)}^{2}=\frac{1}{3a}\frac{d} {dx} {(ax+b)}^{3}

 \implies {(ax+b)}^{2}=\frac{d} {dx}(\frac{1}{3a} {(ax+b)}^{3})

 \therefore Anti\:derivative\:of\:{(ax+b)}^{2}\:is{\boxed {\boxed{(\frac{1}{3a} {(ax+b)}^{3})}}}

_________________________________________

 \huge{5)\:sin\:2x-4\:{e}^{3x}}

 The\: anti\: derivative\: of\:\: is\:sin\:2x-4\:{e}^{3x} a\: function\: of\: x

 \implies \frac{d}{dx} (-\frac{1}{2}cos\:2x-\frac{4}{3}{e}^{3x}) =sin\:2x-4{e}^{3x}

 \therefore Anti\:derivative\:of\:sin\:2x-4\:{e}^{3x}\:is{\boxed {\boxed{(-\frac{1}{2}cos\:2x-\frac{4}{3}{e}^{3x})}}}

 \huge{\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

_________________________________________

 \huge{\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Inspection\: method

  •  An\: equation \:consisting \:of \:two\: sides\\ (LHS \:and \:RHS) that \:are\\\:equal\: to \:each \:other.

  •  When\: solving\: an \:equation\: we\\ try\: to\: find \:the \:number\: that\:when\\ substituted\:will\: make \:a \:true \:sentence.

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions