Physics, asked by mayank4923, 11 months ago

(hat i+hat j+ hat k) makes an angle…………………………with each of X, Y and Z-axis.

Answers

Answered by HappiestWriter012
0

Let r be the given vector.

 \boxed{  \pink{\boxed{ \vec{r} =  \hat{i} +  \hat{j} +  \hat{k}}}}

Magnitude of the vector

 |\vec{r} | =  |  \hat{i} +  \hat{j} +  \hat{k} |  =  \sqrt{ {1}^{2}  +  {1}^{2} +  {1}^{2}  }  =  \sqrt{3}

By Dot Product,

cos \theta =  \frac{( \vec{a} . \vec{b})}{ | \vec{a}| | \vec{b}|  }

Since, i, j, k are the unit vectors along the coordinate axes.

Angle made by the vector with X axis is,

cos \theta =  \frac{( \vec{r} . \hat{i})}{ | \vec{r}| | \hat{i}|  }  \\  \\ cos \theta =  \frac{(\hat{i} +  \hat{j} +  \hat{k}). \hat{i}}{ \sqrt{3} \times 1 }  \\  \\ cos \theta =  \frac{1 + 0 + 0}{ \sqrt{3} }  \\  \\ cos \theta \:  =  \frac{1}{ \sqrt{3} }

Angle made by the vector with Y axis is,

cos \theta =  \frac{( \vec{r} . \hat{j})}{ | \vec{r}| | \hat{j}|  }  \\  \\ cos \theta =  \frac{(\hat{i} +  \hat{j} +  \hat{k}). \hat{j}}{ \sqrt{3} \times 1 }  \\  \\ cos \theta =  \frac{0 + 1 + 0}{ \sqrt{3} }  \\  \\ cos \theta \:  =  \frac{1}{ \sqrt{3} }

Angle made by the vector with Z axis is,

cos \theta =  \frac{( \vec{r} . \hat{k})}{ | \vec{r}| | \hat{k}|  }  \\  \\ cos \theta =  \frac{(\hat{i} +  \hat{j} +  \hat{k}). \hat{k}}{ \sqrt{3} \times 1 }  \\  \\ cos \theta =  \frac{0 + 0 + 1}{ \sqrt{3} }  \\  \\ cos \theta \:  =  \frac{1}{ \sqrt{3} }

Therefore, The angle made the vector with the axes is cos^-1(1/3)

Answered by AllFatherOdin
0

Answer:

Let r be the given vector.

Explanation:

Similar questions