Math, asked by Sudhir4661, 5 months ago

Help!


If \mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}
&
\mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}


then find

 \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

Answers

Answered by Anonymous
8

Given:-

 \\

\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

\mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

 \\

To Find:-

 \\

•Value of  \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

 \\

Solution:-

 \\

\sf Here

\leadsto \mathrm{x+y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

 \\

\leadsto \mathrm{x+y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}+(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

 \\

\leadsto \mathrm{x+y=\dfrac{5+3-2\sqrt{5}\sqrt{3}+5+3+2\sqrt{5}\sqrt{3}}{5-3}} \\

\leadsto \mathrm{x+y=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}}

 \\

\leadsto \mathrm{x+y=\dfrac{16}{2}}

 \\

\leadsto \mathrm{x+y=8}

 \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf Again

\leadsto \mathrm{x-y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

 \\

\leadsto \mathrm{x-y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}-(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

 \\

\leadsto \mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-(5+3+2\sqrt{5}\sqrt{3})}{5-3}}

 \\

\leadsto \mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-5-3-2\sqrt{5}\sqrt{3}}{2}}

 \\

\leadsto \mathrm{x-y=\dfrac{8-2\sqrt{15}-8-2\sqrt{15}}{2}}

 \\

\leadsto \mathrm{x-y=\dfrac{-4\sqrt{15}}{2}}

 \\

\leadsto \mathrm{x-y=-2\sqrt{15}}

 \\

_____________

 \\

\leadsto \mathrm{xy=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

 \\

\leadsto \mathrm{xy=1}

 \\

Now,

 \\

\leadsto \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

 \\

\leadsto \sf{\dfrac{x^{2}+xy+y^{2}+xy-xy}{x^{2}-xy+y^{2}+xy-xy}}

 \\

\leadsto \sf{\dfrac{x^{2}+2xy+y^{2}-xy}{x^{2}-2xy+y^{2}+xy}}

 \\

\leadsto \sf{\dfrac{(x+y)^{2}-xy}{(x-y)^{2}+xy}}

 \\

Putting the values :-

 \\

\leadsto \sf{\dfrac{(8)^{2}-1}{(-2\sqrt{15})^{2}+1}}

 \\

\leadsto \sf{\dfrac{64-1}{60+1}}

 \\

\leadsto \sf{\dfrac{63}{61}}

 \\

Hence, the required value is  \tt{\dfrac{63}{61}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

\large\qquad\star{\underline{\underline{\frak{\red{Need\;to\;Know :}}}}}\\ \\

 \\

\tt{(a+b)^{2}=a^{2}+2ab+b^{2}}

\tt{(a-b)^{2}=a^{2}-2ab+b^{2}}

\tt{(a+b)(a-b)=a^{2}-b^{2}}

 \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions