Math, asked by chillwildlife, 10 days ago

help me by finding the answer of this question.
the actual answer is 35.
but I need steps !!
find asap:)​

Attachments:

Answers

Answered by senboni123456
6

Answer:

Step-by-step explanation:

We have,

\bf{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\,\,\,\,and\,\,\,\,y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

Now,

\sf{x+y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

\sf{\implies\,x+y=\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}

\sf{\implies\,x+y=\dfrac{2\left\{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\right\}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}}

\sf{\implies\,x+y=\dfrac{2\left\{3+2\right\}}{3-2}}

\sf{\implies\,x+y=10}

And,

\sf{xy=\left(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\right)\cdot\left(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)}

\sf{\implies\,xy=1}

Now,

\sf{\green{x^2+xy+y^2}}

\sf{=x^2+xy+xy+y^2-xy}

\sf{=x^2+2xy+y^2-xy}

\sf{=(x+y)^2-xy}

\sf{=(10)^2-1}

\sf{=100-1=99}

Similar questions