Math, asked by tejeswar184, 6 months ago

help me friends
plz don't spam​

Attachments:

Answers

Answered by anindyaadhikari13
17

Answer:-

Given that,

 \sf { \cos}^{2} \theta =  \frac{ {a}^{2} - 1}{3}

 \sf { \tan}^{2} ( \frac{ \theta}{2} ) =  { \tan }^{ \frac{2}{3} }  \alpha

 \sf \implies { \tan}^{3} ( \frac{ \theta}{2} ) =  \tan\alpha

 \sf \implies \frac{ { \sin}^{3}( \frac{\theta}{2} )}{{ \cos}^{3}( \frac{\theta}{2} )}  =  \frac{ \sin \alpha }{ \cos \alpha }

 \sf \implies \frac{ { \sin}^{3}( \frac{\theta}{2} )}{ \sin\alpha }  =  \frac{{ \cos}^{3}( \frac{\theta}{2} )}{ \cos \alpha }

Let us assume that,

 \sf\frac{ { \sin}^{3}( \frac{\theta}{2} )}{ \sin\alpha }  =  \frac{{ \cos}^{3}( \frac{\theta}{2} )}{ \cos \alpha }  = k

 \sf \implies{ \sin}^{3}( \frac{\theta}{2} ) = k \sin \alpha  \: ...(i)

 \sf \implies{ \cos}^{3}( \frac{\theta}{2} ) = k \cos \alpha  \: ...(i)

 \sf \therefore {k}^{ \frac{2}{3} }  { \sin}^{ \frac{2}{3} }  \alpha  +  {k}^{ \frac{2}{3} } { \cos}^{ \frac{2}{3} } \alpha  = 1

Squaring and adding equation (i) and (ii), we get,

 \sf \implies {k}^{2} ( { \sin }^{2} \alpha  +  { \cos}^{2}  \alpha ) =  { \sin}^{6} ( \frac{ \theta}{2} ) +  { \cos }^{6} ( \frac{ \theta}{2} )

 \sf \implies {k}^{2} =  { \sin}^{6} ( \frac{ \theta}{2} ) +  { \cos }^{6} ( \frac{ \theta}{2} )

 \sf \implies {k}^{2}  =  {( { \sin}^{2} ( \frac{ \theta}{2} ) +  { \cos}^{2}( \frac{ \theta}{2} ))}^{3}  - 3 { \sin }^{2}( \frac{ \theta}{2} ){ \cos }^{2}( \frac{ \theta}{2} )({ \sin}^{2} ( \frac{ \theta}{2} ) +  { \cos}^{2}( \frac{ \theta}{2} ))

 \sf \implies {k}^{2}  = 1 -  \frac{3}{4} ( { \sin}^{2}  \theta)

 \sf \implies {k}^{2}  = 1 -  \frac{3}{4} ( 1 - {\cos}^{2}  \theta)

 \sf \implies {k}^{2}  = 1 -  \frac{3}{4} -  \frac{3}{4} {\cos}^{2}  \theta

 \sf \implies {k}^{2}  = \frac{ {a}^{2} }{4}  \implies k =  \frac{a}{2}

 \sf \therefore {k}^{ \frac{2}{3} }  { \sin}^{ \frac{2}{3} }  \alpha  +  {k}^{ \frac{2}{3} } { \cos}^{ \frac{2}{3} } \alpha  = 1

 \sf  \implies{k}^{ \frac{2}{3} } ( { \sin}^{ \frac{2}{3} }  \alpha  +  { \cos}^{ \frac{2}{3} } \alpha)  = 1

 \sf  \implies ( { \sin}^{ \frac{2}{3} }  \alpha  +   { \cos}^{ \frac{2}{3} } \alpha)  =  \frac{1}{ {k}^{ \frac{2}{3} } }

 \sf =  \large \Big( \frac{1}{ \frac{a}{2} } \Big)^{ \frac{2}{3} }

 \sf =  {( \frac{2}{a})}^{3}

Hence,

 \boxed{\sf { \sin}^{ \frac{2}{3} }  \alpha  +   { \cos}^{ \frac{2}{3} } \alpha=  { \bigg(\frac{2}{a} \bigg)}^{ \frac{2}{3} }  }

Correct Answer:- Option B

This is the required answer.

Answered by soumika444
1

Answer:

OLA!

Step-by-step explanation:

THANK YOU SO MUCH TEJASWAR184 BRO....

THANK YOU SO MUCH DEAR.....

Attachments:
Similar questions