help please maths questions for 9th
Attachments:
Answers
Answered by
136
1) (sin θ + cos θ)² - (sin θ - cos θ)² = 4 sin θ cos θ
2) (sin⁴ θ - cos⁴ θ)/(sin² θ - cos² θ) = 1
1) By using square relations we get
sin θ + cos θ = 1
So, keeping this in mind we get the value of this problem
- (sin θ + cos θ)² - (sin θ - cos θ)² = 4 sin θ cos θ
By simplifying we get
- sin² θ + 2 sin θ cos θ - (sin² θ - 2 sin θ cos θ + cos² θ = 4 sin θ cos θ
- sin² θ + 2 sin θ cos θ - sin² θ - 2 sin θ cos θ + cos² θ = 4 sin θ cos θ
- 2 sin θ cos θ + 2 sin θ cos θ = 4 sin θ cos θ
- 4 sin θ cos θ = 4 sin θ cos θ
- LHS = RHS
Hence, Proved !!
2) (sin⁴ θ - cos⁴ θ)/(sin² θ - cos² θ) = 1
By cross multiplying we get
- (sin⁴ θ - cos⁴ θ) = 1 × (sin² θ - cos² θ)
- (sin⁴ θ - cos⁴ θ) = (sin² θ - cos² θ)
sin⁴ θ - cos⁴ θ can be written as (sin² θ)² - (cos² θ)²
- (sin² θ)² - (cos² θ)² = sin² θ - cos² θ
Now applying a² - b² = (a - b)(a + b)
- (sin² θ - cos² θ)(sin² θ + cos² θ) = sin² θ - cos² θ
Now transposing sin² θ - cos² θ ,
- sin² θ + cos² θ = (sin² θ - cos² θ)/(sin² θ - cos² θ)
(sin² θ - cos² θ)/(sin² θ - cos² θ) = 1
- sin² θ + cos² θ = 1
By using square relations :
sin² θ + cos² θ is
So,
- 1 = 1
- LHS = RHS
Hence, Proved !!
Similar questions