Physics, asked by sarah92, 11 months ago

Hey❤
Google ⚠ (DON'T COPY PASTE)
The equation for a travelling wave in x - direction is, y = 0.07 sin (80x-3t) where x, y and t are in SI units. Calculate the frequency, velocity and wavelength of the wave.

Carries 3 Marks

Class 11 CBSE

Answers

Answered by nirman95
154

Answer:

Given:

Equation of a travelling wave has been provided :

y = 0.07 sin(80x - 3t)

To find:

Frequency, velocity and wavelength of the wave.

Calculation:

We will first compare the given Equation with a standard Equation of travelling wave :

y = A sin(kx - ωt)

After comparing, we get

  • A = 0.07
  • k = 80
  • ω = 3

1. Velocity of a travelling wave is given as :

v = ω/k

=> v = 3/80

=> v = 0.0375 m/s

2. Wavelength is given as :

k = 2π/λ

=> λ = 2π/k

=> λ = 2π/80

=> λ = π/40 metres.

3. Frequency is given as :

Freq. = ω/2π

=> Freq. = 3/2π Hz.

Answered by Sharad001
119

Question :-

→ Given above

Answer :-

(1) \: \sf \:  v \:  =  \green{0.038 \:  \frac{m}{s}} \:  \\  \\ (2) \: \sf  \lambda \:  =   \blue{\frac{ \pi}{40} } \green{or \: } \red{ \frac{22}{280}  \: m \: } \\  \\ (3) \: {\sf f =   \red{\frac{21}{44}}  \: or \:  \green{ \frac{3}{2 \pi} } }\sf \:  {second}^{ - 1}  \: or \: Hz \:

Explanation :-

Given that ,

→ y = 0.07 sin (80x - 3t)

We know that standard equation of wave ↓

  \leadsto \sf y \red{  = A }\:  \green{ \sin(kx -  \omega \: t)} \\  \\  \blue{ \sf \:  \: after \: comparing \: }  \red{\sf \: we \: get \: } \\  \\   \boxed{ \red{\star}} \:  \:  \sf  \: k = 80 \\  \\  \boxed{  \green{\star}} \:  \:  \sf \omega \:  = 3 \\  \\  \boxed{ \purple{ \star}} \sf \: A \:  = 0.07

Now ,

(1) \sf \: \pink{velocity \: (v)  }\\  \\  \implies \sf \red{ v \:}  =  \green{ \frac{ \omega}{k} } \\  \\  \implies \sf \purple{ v \:  =  \frac{3}{80} } \\  \\  \implies \boxed{ \sf \:  v \:  =  \green{0.038 \:  \frac{m}{s} }} \:  \sf (in \: round \: figure) \\  \\ (2) \sf \:  \blue{wavelength \: ( \lambda)} \\  \\  \leadsto \sf \red{k = } \green{ \frac{2 \pi}{ \lambda} } \\  \\  \leadsto \sf \lambda \:  =  \frac{2 \pi}{80}  \\  \\  \leadsto \boxed{ \sf  \lambda \:  =   \blue{\frac{ \pi}{40} } \green{or \: } \red{ \frac{22}{280}  \: m \: }} \\  \\ (3) \sf \: frequency \: (f) \\  \\  \because \sf \red{ time \:}  = \green{  \frac{2 \pi}{ \omega} } \\  \\  \sf \: and   \\  \sf \star \: \:  frequency \: (f) =  \frac{1}{time}  \\  \\  \red{ \leadsto \: } \sf \green{ f = } \orange{ \frac{1}{ \red{ \frac{2 \pi}{ \omega} }} } \\  \\  \leadsto \sf \: f =   \green{\frac{ \omega}{2 \pi} } \\  \\  \leadsto \sf \red{ f =} \blue{  \frac{3}{2 \pi} } \\  \\  \leadsto \boxed{ \sf f =   \red{\frac{21}{44}}  \: or \:  \green{ \frac{3}{2 \pi} } }\sf \:  {second}^{ - 1}  \: or \: Hz

________________

Hope it helps you .

Similar questions