Math, asked by Ramlayaksingh3, 1 year ago

Hey Guys please answer this math question

Prove that diagonals of a square are equal and perpendicular to each other.

Give a detailed answer

no spam

Answers

Answered by kalkat
0
o its very easy
see ;
when we draw square
we see that all the angles of a square is of 90 degree
hence they are perpendicular to each other.
and if they have angles of 90 degree then there diagonals will also. be equal.

Ramlayaksingh3: prove it bro
Answered by Anonymous
5

Given :- ABCD is a square.

To proof :- AC = BD and AC ⊥ BD

Proof :- In △ ADB and △ BCA

AD = BC [ Sides of a square are equal ]

∠BAD = ∠ABC [ 90° each ]

AB = BA [ Common side ]

△ADB ≅ △BCA [ SAS congruency rule ]

⇒ AC = BD [ Corresponding parts of congruent triangles are equal ]

In △AOB and △AOD

OB = OD [ Square is also a parallelogram therefore, diagonal of parallelogram bisect each other ]

AB = AD [ Sides of a square are equal ]

AO = AO [ Common side ]

△AOB ≅ △ AOD [ SSS congruency rule ]

⇒ ∠AOB = ∠AOD [ Corresponding parts of congruent triangles are equal]

∠AOB + ∠AOD = 180° [ Linear pair ]

∠ AOB = ∠AOD = 90°

⇒ AO ⊥ BD

⇒ AC ⊥ BD

Hence proved, AC = BD and AC ⊥BD

Similar questions