❤❤❤❤Heya Everyone❤❤❤❤
Divide :- 5x(x^2 - x + 1) - (9 + 4x^2) by 4x - 1. Hence write the degree of the Quotient and the remainder. (Polynomial)
Find x if 2^(2x+2) = 4^(2x-1)
Answers
Step-by-step explanation:
(1)
Given, f(x) = 5x(x² - x + 1) - (9 + 4x²)
= 5x³ - 5x² + 5x - 9 - 4x²
= 5x³ - 9x² + 5x - 9.
Given, g(x) = 4x - 1.
Long Division Method:
4x - 1) 5x³ - 9x² + 5x - 9 (5x²/4 - 31x/16 + 49/64
5x³ - 31x²/4
--------------------------
-31x²/4 + 5x - 9
-31x²/4 + 31x/16
-----------------------------
49x/16 - 9
49x/16 - 49/64
--------------------------------------
-527/64
∴ Quotient = (5x²/4) - (31x/16) + (49/64, Remainder = -527/64.
Therefore:
Highest Degree of Quotient = 2.
Degree of Remainder = 0.
(2)
Given: 2^(2x + 2) = 4^(2x - 1)
⇒ 2^(2x + 2) = [2^2)^(2x - 1)
⇒ 2^(2x + 2) = 2^(4x - 2)
⇒ 2x = 4x - 4
⇒ -2x = -4
⇒ x = 2.
Therefore, the value of x = 2.
Hope it helps!
Answer:
x=2
Step-by-step explanation: