Math, asked by Anonymous, 1 year ago

Heya Friends!! ♡♥

Please solve it.


Find the value of y in:

 \frac{y + 7}{3}  = 1 +  \frac{3y - 2}{5}

Answers

Answered by 1Angel25
7
\huge{\red{\underline{\pink{\mathbb{AnSwEr}}}}}

See the attachment☺✌________✔✔✔
Attachments:
Answered by Anonymous
3

Step-by-step explanation:

heloo... \\  \frac{y + 7}{3}  = 1 +  \frac{3y - 2}{5}  \\  \frac{y + 7}{3}  =  \frac{5 + 3y - 2}{5}  \\ \frac{y + 7}{3}  =  \frac{3y + 3}{5}  \\  \\ shifting \: \frac{y + 7}{3}  \: on \: other \: side =  >  \\  \frac{3y + 3}{5}  - \frac{y + 7}{3} = 0  \:  \\  \\ lcm \: of \: 5 \: and \: 3 \: is \: 15 \\  \frac{3(3y + 7) - 5(y + 7)}{15}   = 0\\  \frac{9y + 21 - 5y  - 35}{15}   = 0\\  \frac{4y - 14}{15}  = 0 \\ multiplying \: by \: 15 \: on \: both \: sides =  >  \\ 15 \frac{4y - 14}{15}  = 15(0) \\ 4y - 14 = 0 \\ y =  \frac{14}{4}  \\ y =  \frac{7}{2}  = 3.5 \\  \\ hope \: it \: helps \: uh..

Similar questions