heya friends plzz this question ......
Answers
Ina triangle ABC,
Let a = 10cm, b = 16cm, c = 14cm.
We know that Semi-perimeter of a triangle s :
= > (a + b + c)/2
= > (10 + 16 + 14)/2
= > 40/2
= > 20cm.
Area of triangle ABC:
We know that diagonal divides a parallelogram into 2 triangles of equal areas.
= > Area of parallelogram ABCD = 2(Area of triangle ABC)
=> 138.4cm^2.
Hope this helps!
hy
friend
here is your answer
In Δ ABC
Using Heron's Formula,
S = (a + b + c)/2
⇒ S = (10 + 14 +16)/2
⇒ S = 40/2
⇒ S = 20
Area =
∴ Area of the triangles =
⇒ Area of Δ ABC =
⇒ Area = √4800
⇒ Area = 10√48
⇒ Area = 10√(2 × 2 × 2 × 2 × 3)
⇒ Area = 10 × 2 × 2√3
⇒ Area of Δ ABC = 40√3 cm²
∴ Area of Δ ABC = 69.28 cm².
Area of the Δ ADC = Area of the ΔABC.
[∵ Both the triangles are congruent)
∴ Area of the Parallelogram = 2 × Area of Δ ABC.
⇒ Area of the Parallelogram = 2 × 69.28 cm²
∴ Area of the Parallelogram = 138.56 cm²
- the Area of the Parallelogram is 138.56 cm².
thankyou
brainly user