Math, asked by Anonymous, 1 year ago

Heya users.!!



Pls try to answer this question properly..!!



------------------------------------------------------------------------------------------------------------------------------------

Q. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

--------------------------------------------------------------------------------------------------------------------------------



NEED QUALITY AND CORRECT ANSWER..!!


NO SPAM ANSWERS PLEASE..!!


PLS ANSWER THIS QUESTION FAST NEED URGENTLY..!!

Answers

Answered by siddhartharao77
4

Step-by-step explanation:

Let AB be the chord of circle with centre M.

PA and PB are two tangents drawn from point P.

To prove: ∠PAM = ∠PBM

In ΔAPM & ΔBPM,

⇒ AP = BP {Tangents from an external point are equal}

⇒ ∠APM = ∠BPM

⇒ PM = PM {Common}

⇒ ΔPAM ≅ ΔPBM  {SAS congruence criterion}

⇒ ∠PAM = ∠PBM

Hope it helps!

Attachments:

Anonymous: Thank u..!! A LOT..!!
Anonymous: I Hope may god bless u in each and every movement of ur life...!! :)
siddhartharao77: Thank you so much
Answered by TRISHNADEVI
10
 \bold{\underline{Figure \: \: is \: \: in \: \: the \: \: attached \: \: picture \:}}.⬆⬆



 \red{\huge{ \underline{ \underline{ \overline{ \mid{ \bold{ \: \: SOLUTION \: \: { \mid}}}}}}}}



 \bold{Let,} \\ \\ \bold{<br />PQ \: \: be \: \: the \: \: chord \: \: of \: \: the \: \: circle \: } \\ \bold{whose \: \: centre \: \: is \: \: \: O . \: }

 \bold{Again} \\ \\ \bold{<br />AP \: \: and \: \: AQ \: \: be \: \: the \: \: tangents \: \: at \: \: P} \\ \\ \bold{ and \: \: Q \: \: from \: \: the \: \: common \: \: point \: \: A.}

 \bold{We \: \: have \: \: to \: \: join \: \: AO \: \: and \: \:suppose \: } \\ \bold{ AO \: \: \: meets \: \: the \: \: chord \: \: at \: \: the \: \: point \: \: B.}

 \bold{ \underline{To \: \: Prove \: : } \: \: \: \: \: \: \: \underline{ \angle{ APQ }= \angle{AQP}}}



 \bold{ \underline{ \: PROOF \: \:  : }}



 \bold{In \: \: the \: \: ΔPAB \: \: and \: \: ΔQAB }\\ \\ <br />\bold{PA =QA \: \: \: \: [Tangents \: \: from \: \: an } \\ \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: external \: \: points \: \: to \: \: a \: } \\ \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: circle \: \: are \: \: equal]} \\ \\ \bold{ \angle{PAB }= \angle{QAB} \: \: \: \: [AP \: \: and \: \: AQ \: \: are} \\ \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: equally \: \: inclined \: \: to \: \:OA ]} \\ \\ \bold{AB = AB \: \: \: \: \: \: \: \: \: [Common \: \: side]} \\ \\ \bold{So,} \\ \\ \bold{ΔPAB ≅ΔQAB \: \: \: [S - A - S \: \: congruence]} \\ \\ \bold{Thus,} \\ \\ \bold{ \underline{ \: \: \angle{ APQ }= \angle{AQP} \: \: } \: \: \: \: \: \: \: \: \: [C.P.C.T.]}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{ \underline{ \bold{ \: \: \: \: Hence \: \: Proved \: \: }}}

______________________________________________________

 \mathfrak{ \huge{\red{ \: \: THANKS..}}}
Attachments:

Anonymous: Thank u very very very much ...for helping me dear..!! :)
TRISHNADEVI: u r wlcm
Anonymous: I Hope may god bless u in each and every movement of ur life...!! :)
TRISHNADEVI: TYSM
Similar questions