Math, asked by AkshaSingh, 11 months ago

Heyy guys.....
answer this one Plzz...

Attachments:

Answers

Answered by Anonymous
1

On taking L.H.S. :

 { \tan }^{2}  \alpha  -  { \tan}^{2}  \beta  \\  \\  =  >  \frac{ { \sin}^{2}  \alpha }{ { \cos }^{2}  \alpha }  -  \frac{ { \sin }^{2} \beta  }{ { \cos }^{2}  \beta }  \\  \\  =  >  \frac{ { \sin }^{2} \alpha  { \cos }^{2} \beta -  { \sin }^{2}  \beta  { \cos}^{2} \alpha }{ { \cos}^{2} \alpha  { \cos}^{2}  \beta  }  \\  \\  =  >   \frac{  { \sin }^{2}  \alpha (1 -  { \sin}^{2}  \beta ) -  { \sin}^{2}  \beta (1 -  { \sin }^{2}  \alpha)  }{ { \cos}^{2}  \alpha  { \cos }^{2} \beta  }  \\  \\  =  >  \frac{ { \sin}^{2} \alpha  -  { \sin}^{2}  \alpha  { \sin }^{2}  \beta  -  { \sin}^{2} \beta  +  { \sin }^{2}  \alpha  { \sin }^{2}  \beta }{ { \cos }^{2}  \alpha  { \cos }^{2} \beta  }  \\  \\  =  >  \frac{ { \sin}^{2}  \alpha  -  { \sin }^{2} \beta  }{ { \cos }^{2} \alpha  { \cos}^{2}  \beta  }  = R.H.S.

HENCE PROVED ✔️✔️

✌️_____ Fóllòw MË _____✌️

Answered by Anonymous
3

Step-by-step explanation:

hope it helps you bye take care

Attachments:
Similar questions