Math, asked by RajvanshiC, 10 months ago

hii guyz....find the derivative of the given pic​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

y =  \cos^{ - 1} ( \frac{a + b \cos(x) }{b + a \cos(x) } )

 \frac{dy}{dx} =  \frac{d}{dx}( \frac{a + b \cos(x) }{b + a \cos(x) } ). \frac{ - 1}{ \sqrt{1 -  (\frac{a + b \cos(x) }{b + a \cos(x) } )^{2} } }

 \frac{dy}{dx}  =  \frac{ - b \sin(x)(b + a \cos(x) )  + a \sin(x)(a + b \cos(x))}{ {(b + a \cos(x) )}^{2} } .  \frac{ - (b + a \cos(x)) }{ \sqrt{ {(b + a \cos(x)) }^{2} -  {(a + b \cos(x)) }^{2}  } }

On simplifying, we get

 \frac{dy}{dx} =  \frac{( {b}^{2} -  {a}^{2}) \sin(x)  }{b + a \cos(x) } . \frac{1}{ \sin(x) \sqrt{ {b}^{2} -  {a}^{2}  }  }

 \frac{dy}{dx} =  \frac{ \sqrt{ {b}^{2} -  {a}^{2}  } }{b + a \cos(x)  }

Similar questions