Math, asked by Anonymous, 9 months ago

Hii___/!\_

\Large{\underline{\underline{\mathfrak{\pink{bf{Question}}}}}}
★Find the value of ......
\displaystyle \lim_{x \to \infty } {x}^{\dfrac{1}{x}}

Answers

Answered by Ravitejakarra24
13

Step-by-step explanation:

you can understand by seeing the pic

Attachments:
Answered by AditiHegde
6

The value of \lim _{x\to \infty }\left(x^{\frac{1}{x}}\right) is as follows

Given,

\lim _{x\to \infty }\left(x^{\frac{1}{x}}\right)

Applying exponential rule,

a^x=e^{\ln \left(a^x\right)}=e^{x\cdot \ln \left(a\right)}

we get,

x^{\frac{1}{x}}=e^{\frac{1}{x}\ln \left(x\right)}

=\lim _{x\to \infty \:}\left(e^{\frac{1}{x}\ln \left(x\right)}\right)

= 1

Therefore the value of \lim _{x\to \infty }\left(x^{\frac{1}{x}}\right) is 1.

Similar questions