Math, asked by nitinnarwal, 1 year ago

how it is solve......dy/dx of cosx/logx

Answers

Answered by abhi178
3
here,
y=\frac{cosx}{logx}
we know, the concept of defferentiation
e.g.,
if\:\:y=  \frac{f(x)}{g(x)} \\  \\  \\ then \:  \:  \:  \:  \frac{dy}{dx}  =  \frac{g(x) \frac{df(x)}{dx} - f(x) \frac{dg(x)}{dx}  }{ {g(x)}^{2} }
use this concept here,
so,\frac{dy}{dx}=\frac{logx.\frac{dcosx}{dx}-cosx.\frac{dlogx}{dx}}{logx^2} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{logx. ( - sinx) - cosx. \frac{1}{x} }{ {(logx)}^{2} }
Similar questions