How many maximum and minimum number of zeros can a quadratic polynomial have?
Answers
Answered by
63
aloha user!!
a quadractic polynomial is the polynomial in which the highest degree is 2.
so the maximum number of zeroes/roots/values that it can have => 2.
what about minimum number of zeroes ?
=> 0
take for example-
x² ( the value is 0 so it has one root )
x² + 2 ( it hasn't got any root. )
why?
=> x² + 2 = 0
=> x² = -2
=> x =√-2 ( a negative number can never be in root )
and lastly:
x² - 4 = 0
x² = 4
x= √ 4
so we get two values i.e +4 and -4.
hope it helps !!
peace out !!
a quadractic polynomial is the polynomial in which the highest degree is 2.
so the maximum number of zeroes/roots/values that it can have => 2.
what about minimum number of zeroes ?
=> 0
take for example-
x² ( the value is 0 so it has one root )
x² + 2 ( it hasn't got any root. )
why?
=> x² + 2 = 0
=> x² = -2
=> x =√-2 ( a negative number can never be in root )
and lastly:
x² - 4 = 0
x² = 4
x= √ 4
so we get two values i.e +4 and -4.
hope it helps !!
peace out !!
Answered by
13
ANSWER:
The degree of a quadratic polynomial is '2'
So, the maximum number of zeroes a quadratic polynomial can have is two (2)
And, the minimum number of zeroes a quadratic polynomial can have is zero (0)
--------------------------
I hope my answer was helpful. Do mark as BRAINLIEST!
Similar questions