Chemistry, asked by PoojaAlankruthaSai, 1 year ago

How many revolutions an election will make in 2nd shell of He+ in one second​

Answers

Answered by ambner
5

Answer: 2.2429 × 10¹⁴

Step-by-step explanation:

We know that,

According to bohr's atomic model,

Radius of the nth orbit is given by,

r_n=\frac{h^2}{4\pi me^2}\times\frac{n^2}{Z}r

n

=

4πme

2

h

2

×

Z

n

2

Where,

h(Plank's Constant) = 6.62 × 10⁻²⁷ arg-second

m(Mass of electron) = 9.109 × 10⁻²⁸ gram

e(Charge on electron) = 4.808 × 10⁻¹⁰ esu

Putting these values in above equation, We get a simplified equation,

\begin{lgathered}r_n=0.529\times10^{-8}\times\frac{n^2}{Z}\;cm\\\;\\r_n=0.529\times10^{-10}\times\frac{n^2}{Z}\;m\end{lgathered}

r

n

=0.529×10

−8

×

Z

n

2

cm

r

n

=0.529×10

−10

×

Z

n

2

m

For Velocity of electron in nth orbital,

V_n=\frac{2\pi e^2}{h}\times\frac{Z}{n}V

n

=

h

2πe

2

×

n

Z

On Simplifying the equation

V_n=2.18\times10^6\times\frac{Z}{n}\;\;m/sV

n

=2.18×10

6

×

n

Z

m/s

Now, Revolution per second means Frequency of electron

\begin{lgathered}f=\frac{V_n}{2\pi r_n}\\\;\\f=\frac{2.18\times10^6\times\frac{Z}{n}}{2\pi\times0.529\times10^{-10}\times\frac{n^2}{Z}}\\\;\\f=\frac{0.6559\times10^{16}}{n^3}\end{lgathered}

f=

2πr

n

V

n

f=

2π×0.529×10

−10

×

Z

n

2

2.18×10

6

×

n

Z

f=

n

3

0.6559×10

16

For Hydrogen atom , Z = 1 and 3rd orbital n = 3

\begin{lgathered}f=\frac{0.6559\times10^{16}}{3^3}\\\;\\f=0.02429\times10^{16}\\\;\\f=2.2429\times10^{14}\;\text{revolutions per second}\end{lgathered}

f=

3

3

0.6559×10

16

f=0.02429×10

16

f=2.2429×10

14

revolutions per second

Similar questions