Math, asked by wwwpoojajamdagni, 1 year ago

How many terms of A.P: 9,17,25,..... must be taken to give a sum of 636?

Answers

Answered by avinash2511
34
let no. of terms be x
then sum = (x/2)[2×9+(x-1)8]=636
(x/2)[18+8x-8]=636
(x/2)[10+8x]=636
5x+4(x^2)=636
4(x^2)+5x-636=0
x={(-5)+√[25-4(4×-636)]}/8,other root is not defined as that will be -ve and no. of terms can't be -ve
therefore x={-5+√(10201)}/8
x={-5+101}/8
x=96/8
x=12= no of terms
######hope it helps####
Avinash
special request: if u luv my answer mark it brainliest answer
Answered by Anonymous
10

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let: first\: term\; be\: a \:and\: CD\: = 17 - 9 = 8



\bf\huge => S_{n} = 636



\bf\huge => \frac{N}{2}[2a + (n - 1)d] = 636



\bf\huge => \frac{N}{2}[2\times 9 + (n - 1)8] = 636



\bf\huge => \frac{N}{2} (8n - 10) = 636



\bf\huge => n(4n + 5) = 636



\bf\huge => 4n^2 + 5n + 636 = 0



\bf\huge => n = \frac{-5 + \sqrt{25 - 4\times 4\times -636}}{2\times 4}



\bf\huge = \frac{-5 + \sqrt{25 + 10176}}{8}



\bf\huge = \frac{- 5 + \sqrt{10201}}{8}



\bf\huge = \frac{-5 + 101}{8}



\bf\huge = \frac{96}{8} , \frac{-106}{8}



\bf\huge = 12 , \frac{-53}{4}



\bf\huge But\: n \:cannot\: be\: Negative



\bf\huge => n = 12



\bf\huge Hence\:Sum\: of\: 12\: terms\: is\: 636




\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions