Math, asked by vivujr99, 2 months ago

How many terms of the A. P : 6,12,18, must be taken to give a sum 330​

Answers

Answered by Anonymous
54

Solution -

We have,

⠀⠀⠀➝ A.P. = 6, 12, 18, ...

We can see that the given series in an A.P. with

  • First term (a) = 6
  • Common difference (d) = 6

We have to find the number of terms that must be taken to give a sum 330. Therefore,

  • \sf{S_n = 330}

Now, we use the formula given below :-

\large{\bf{\longmapsto{\boxed{\pink{S_n = \dfrac{n}{2}[2a + (n -1)d]}}}}}

Putting all the values in the formula

\tt:\implies\: \: \: \: \: \: \: \: {330 = \dfrac{n}{2} [2(6) + (n -1)6]}

\tt:\implies\: \: \: \: \: \: \: \: {330 \times 2 = n[12 + 6n - 6]}

\tt:\implies\: \: \: \: \: \: \: \: {660 = n[6n + 6]}

\tt:\implies\: \: \: \: \: \: \: \: {660 = 6n^2 + 6n}

\tt:\implies\: \: \: \: \: \: \: \: {6n^2 + 6n - 660 = 0}

Taking 6 as common

\tt:\implies\: \: \: \: \: \: \: \: {6(n^2 + n - 110) = 0}

\tt:\implies\: \: \: \: \: \: \: \: {n^2 + n - 110 = 0}

We can see that, it is in the form of quadratic equation.

Splitting the middle term

\tt:\implies\: \: \: \: \: \: \: \: {n^2 + 11n - 10n - 110 = 0}

\tt:\implies\: \: \: \: \: \: \: \: {n(n + 11) - 10(n + 11) = 0}

\tt:\implies\: \: \: \: \: \: \: \: {(n + 11) (n - 10) = 0}

We get,

➝ n = -11⠀⠀⠀❲✘❳

➝ n = 10⠀⠀⠀❲✔❳

[Since, number of terms cannot be negative]

\small\underline{\sf{Hence,\: number\: of\: terms\: must\: be\: taken\: is\: 10.}}

Answered by srishanth30
1

Answer:

Hope this image may help u

PLEASE MARK ME AS A BRAINLIST

Attachments:
Similar questions