Math, asked by namku, 1 year ago

how to convert tan inverse to cos inverse formula

Answers

Answered by rational
1
Consider the right triangle in attachment.

Applying trig ratios we get :
\tan(t)~=~x\implies t=\tan^{-1}(x)
\cos(t)~=~\frac{1}{\sqrt{1+x^2}}\implies t=\cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)
\sin(t)~=~\frac{x}{\sqrt{1+x^2}}\implies t=\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)

Therefore
\tan^{-1}(x)~=~\cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)~=~\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)
Attachments:
Similar questions