How to integrate dx/1-3sinx
Answers
1/2√2 log|(tan(x/2) - 3 - 2√2)/(tan(x/2) - 3 + 2√2)| + C
we have to find Integration of 1/(1 - 3sinx)
using , sin2θ= (2tanθ)/(1 + tan²θ)
so, sinx = 2tan(x/2)/{1 + tan²(x/2)}
now, dx/(1 - 3sinx) = dx/[1 - 6tan(x/2)/{1 + tan²(x/2)}]
= {1 + tan²(x/2)}dx/{1 + tan²(x/2) - 6tan(x/2)}
= sec²(x/2)dx/{1 + tan²(x/2) - 6tan(x/2)}
now let tan(x/2) = p
differentiating both sides,
sec²(x/2) dx = 2dp
so, 2dp/{1 + p² - 6p}
= 2dp/{(p - 3)² - (2√2)²}
from application of Integration,
dx/(x² - a²) = 1/2a ln|(x - a)(x + a)| + C
so, dp/{(p - 3)² - (2√2)²} = 1/4√2 log|(p - 3 - 2√2)/(p - 3 + 2√2)|
so, dx/(1 - 3x) = 2 × 1/4√2 log|(tan(x/2) - 3 - 2√2)/(tan(x/2) - 3 + 2√2)| + C
=1/2√2 log|(tan(x/2) - 3 - 2√2)/(tan(x/2) - 3 + 2√2)| + C
also read similar questions:integration of [2x² - 3sinx + 5√x].dx
https://brainly.in/question/5084987
integrate.......2-3sinx/cos^2x
https://brainly.in/question/11431473