Math, asked by archis45, 1 year ago

i/(2+i) +3\ ( 1+ 4i)​

Answers

Answered by Anonymous
10

\huge\mathfrak{Answer}

\huge\sf{solution:}

 \frac{i}{2 + i}  +  \frac{3}{1 + 4i}

first, do multipicative inverse

\implies\frac{ i \times (2 - i)}{(2 + i) \times (2 - i)} +  \frac{3 \times (1  -  4i)}{(1 + 4i)(1 - 4i)}

\implies\frac{  2i   -   {i}^{2} }{4 -  {i}^{2} } +  \frac{3 - 12i}{1 -  {4i}^{2} }

\implies\frac{ 2i + 1}{4 + 1} +  \frac{3 - 12i}{1 + 16}

\implies\frac{17(2 - i) + 5(3 - 12i)}{85}

\implies\frac{34  + 15 - 17i - 60i}{85}

\implies \frac{  49 - 77i}{85}

\implies\frac{49}{85}  -  \frac{77i}{85}

Similar questions