I = cos^2(x) dxइंटीग्रेशन ऑफ 1
Answers
Answer:
�
�
�
�
� �
� � �
� ��
� �
sin4
(x) cos2
(x) dx
Compute sin4(x) cos2(x) dx.
Solution
Because all of the exponents in this problem are even, our chosen solution involves half angle formulas:
cos2 θ = 1 + cos(2θ)
2
sin2 θ = 1 − cos(2θ)
. 2
Because we have to do a lot of writing before we actually integrate anything,
we’ll start with some “side work” to convert the integrand into something we
know how to integrate.
sin4 x cos2 x = (sin2 x)
2 cos2 x
� �2 � � 1 − cos(2x) 1 + cos(2x) = 2 2
� � � � 1 − 2 cos(2x) + cos2(2x) 1 + cos(2x) = 4 2
1 − 2 cos(2x) + cos2(2x) + cos(2x) − 2 cos2(2x) + cos3(2x) = 8
1 − cos(2x) − cos2(2x) + cos3(2x) = 8
This is all the side work we need to do here, because we know that:
cos2(2x) = x
+ sin(2x) + c1 and
2 4
cos3(2x) = 1 sin(2x) − 1
sin3(2x) + c2. 2 6
We conclude that:
sin4 x cos2 x dx = 1 − cos(2x) − cos2(2x) + cos3(2x) dx
8
1 1 x sin(2x) = 8
x − 2 sin(2x) − 2 + 4 + c1
+
1 sin(2x) − 1
sin3(2x) + c2 2 6
1 x sin(2x) 1 = 8 2 − 4 − 6
sin3(2x) + C
1
x sin(2x) sin3(2x) = + C 16 − 32 − 48
It’s difficult to check that this is the correct answer. If C = 0 this is an odd
function which is at least consistent with the integrand being an even function.
Step-by-step explanation: