Math, asked by uvdeshmukh99, 1 year ago

i) In the given figure , area of the sector is A cm² and perimeter of the sector
is 50 cm. Prove that
a)
 \frac{360}{\pi}  ( \frac{25}{r}  - 1)
b)
a = 25r -  {r}^{2}

Answers

Answered by shwetasharma051983
0
please provide the figure
Answered by sanyamshruti
1

Answer:

radius of circle = r cm

angle subtended at centre = ∅

a )      perimeter of sector = radius + radius + arc

                         50           = r + r + \frac{theta}{360}2\pir

                              50      = 2r + 2r( \frac{theta}{360} \pi)

                               50     = 2r ( 1 + \frac{theta}{360} \pi )

                            \frac{50}{2r}     =  1 + \frac{theta}{360} \pi

                           \frac{25}{r}     =   1 + \frac{theta}{360} \pi

                       \frac{25}{r} -1   =   \frac{theta}{360} \pi

                      theta         =   \frac{360}{\pi } ( \frac{25}{r} -1)                                           ........(1)

b)    area of sector =   \frac{theta}{360} \pi r^{2}

           A     =  \frac{\frac{360 (\frac{25}{r} -1)}{\pi }}{360} ×\pi r^{2}                [(putting the value of theta from eq. ..(1)]    

           A    = \frac{25}{r} × r^{2} -r^{2}

           A   =  25 r -r^{2}

please mark it as brainliest answer

Similar questions