Hindi, asked by udaykumar16, 8 months ago

(i) sin 60° cos 30° + sin 30° cos 60°​

Answers

Answered by chavi7749
28

Explanation:

 \sin60.  \cos30 +  \sin30 . \cos60 \\  =  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{2}   \times   \frac{1}{2}  \\  =  \frac{3}{4}  +  \frac{1}{4}  \\  =  \frac{3 + 1}{4}  \\  =  \frac{4}{4}  \\  = 1 \\  \\   \sin60 =  \frac{ \sqrt{3} }{2}   \\  \cos30 =  \frac{ \sqrt{3} }{2}  \\  \sin30 =  \frac{1}{2}  \\  \cos60 =  \frac{1}{2}

Answered by Anonymous
10

 \sin(60)  \cos(30)  +  \sin(30)  \cos(60 )  \\ lets \: see \: their \: values \\  \sin(60)  = \frac{ \sqrt{3} }{2}  \\  \cos(30)  =  \frac{ \sqrt{3} }{2}  \\  \sin(30)  =  \frac{1}{2}  \\  \cos(60)  =  \frac{1}{2}  \\ now \: substitute \: the \: values \\  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{2}  \times  \frac{1}{2}  \\  \frac{ {( \sqrt{3}) }^{2} }{4}  +  \frac{1}{4}  \\  \frac{3}{4}  +  \frac{1}{4}  \\  \frac{4}{4}  \\  = 1

Similar questions