Math, asked by ankitkumar4096, 1 year ago

I the given figure, DE||BC and if DE:BC =3:5,Find ar(ADE)/ar(bced). QUES.NO. 3​

Attachments:

Answers

Answered by SnehaG
4
\color{blue}\huge\bold\star\underline\mathfrak{Bonjour\:Mate}\star

\color{violet}\huge\bold\star\underline\mathcal{Here\:Is\:Ur\:AnSweR}\star

\color{red}\huge\bold\star\underline\mathfrak{MathS\:MiStresS}\star

given \: that

DE : BC

__3 : 5__

DE || BC.

∴ ∠ADE = ∠ABC 

»  ∠AED = ∠ACB

Applying AA similarity theorem, we can conclude that ∆ ADE ~ ∆ABC.

»  \frac{ar(∆ ABC)}{ar(∆ ADE)} - 1 = \frac{ { 5}^{2} }{ {3}^{2} } - 1

»  \frac{ar(∆ ABC) - ar(∆ ADE)}{ar(∆ ADE)} = \frac{25 - 9}{9}

»  \frac{ar(BCED)}{ar(∆ ADE)} = \frac{16}{ 9}

» or \\ \frac{ar(∆ADE)}{ar(BCED)} = \frac{9}{16}

\color{brown}\huge\bold\star\underline\mathfrak{thankS}\star

<font color="red"><marquee>հàթթվ Եҽժժվ ժαվ</marquee></font>

<font color="green"><marquee>☝enSha Ållåh☝</marquee></font>
Attachments:
Similar questions