Math, asked by Alia15, 1 year ago

I want answer to the Q-43

Attachments:

Answers

Answered by Anonymous
27
Hello mate!!! ____^_^___
Here is the answer. .....

If a+b+c= 0
then a^3+b^3+c^3= 3abc.

HERE, a= r (s-t)
b= s (t-r)
c= t (r-s).
now,
3+b^3+c^3= 3abc.
=> 3rst (s-t) (r-s) (t-r).


hope it helps ☺✌❤
Answered by DIVINEREALM
172

\huge{\bold{\boxed{\boxed{\mathfrak{\red{Your\:Answer}}}}}}

\huge{\bold{\textsf{\pink{We Have To Factorise}}}}

\mathfrak{\blue{r^3(s-t)^3+s^3(t-r)^3+t^3(r-s)^3}}

= {r(s-t)}³+{s(t-r)}³+t(r-s)}³

Now it's in the form \mathfrak{\red{a^3+b^3+c^3}}

\text{SO\:WE\:HAVE}

\huge{\bold{\boxed{\boxed{\mathfrak{\red{ a=r(s-t)}}}}}}

\huge{\bold{\boxed{\boxed{\mathfrak{\red{ b=s(t-r)}}}}}}

\huge{\bold{\boxed{\boxed{\mathfrak{\red{c=t(r-s)}}}}}}

now a+b+c=r(s-t)+s(t-r)+t(r-s)

=rs-rt+st-sr+tr-ts

=rs-sr+st-ts+tr-rt

=rs-rs+st-st+tr-tr=0

We know if a+b+c=0 then a³+b³+c³=3abc

=⟩ {r(s-t)}^3+{s(t-r)}^3+{t(r-s)}^3

\mathfrak{\blue{= 3{r(s-t)}{s(t-r)}{t(r-s)}}}

\mathfrak{\blue{= 3(rs-rt)(st-sr)(tr-ts)}}

\huge{\boxed{\bold{\mathbb{\red{HOPE.IT.HELPS}}}}}


flower161: nyc
Anonymous: Osm le ❤
sshreya0: Nice
sshreya0: are u in some grp like brainly devil
Anonymous: Good
Similar questions