Math, asked by omprakashmohapatra7, 9 months ago

If 0<theta<90°, sin theta+ cos theta=P and q=2p/p^2=1​

Answers

Answered by omkar7117
1

Answer:

p=sinθ+cosθ and q=secθ+cosecθ

q(p²-1)

=(secθ+cosecθ)[(sinθ+cosθ)²-1]

=(1/cosθ+1/sinθ)(sin²θ+2sinθcosθ+cos²θ-1)

={(sinθ+cosθ)/sinθcosθ}(2sinθcosθ) [ Since, sin²θ+cos²θ=1]

=2(sinθ+cosθ)

=2p (Proved)

Answered by sriraagatangirala81
0

p=sinθ+cosθ and q=secθ+cosecθ

q(p²-1)

=(secθ+cosecθ)[(sinθ+cosθ)²-1]

=(1/cosθ+1/sinθ)(sin²θ+2sinθcosθ+cos²θ-1)

={(sinθ+cosθ)/sinθcosθ}(2sinθcosθ) [ Since, sin²θ+cos²θ=1]

=2(sinθ+cosθ)

=2p (Proved)

Similar questions