If 1 + sin2θ = 3sinθ cosθ , then prove that tanθ = 1 or 1/2
Answers
Answered by
55
Solution –
1 + sin^2θ = 3 sinθ cosθ
Divide both side of the equation with cos^2θ
1/cos^2θ + sin^2θ/cos^2θ = 3 sinθ/cosθ
sec^2θ + tan^2θ = 3tanθ
1 + tan^2θ + tan^2θ = 3tanθ
1 + 2tan^2θ – 3tanθ = 0
Substitute tanθ = a
2a^2 – 3a + 1 = 0
Solve the quadratic equation to find out the roots.
2a^2 – 2a – a + 1 = 0
2a (a – 1) – 1 (a – 1) = 0
(2a – 1) ( a – 1) = 0
2a – 1 = 0 and (a – 1) = 0
2a = 1 and a = 1 a = 1/2 and a = 1
Hence a = tanθ
tanθ = 1/2 and tanθ = 1
1 + sin^2θ = 3 sinθ cosθ
Divide both side of the equation with cos^2θ
1/cos^2θ + sin^2θ/cos^2θ = 3 sinθ/cosθ
sec^2θ + tan^2θ = 3tanθ
1 + tan^2θ + tan^2θ = 3tanθ
1 + 2tan^2θ – 3tanθ = 0
Substitute tanθ = a
2a^2 – 3a + 1 = 0
Solve the quadratic equation to find out the roots.
2a^2 – 2a – a + 1 = 0
2a (a – 1) – 1 (a – 1) = 0
(2a – 1) ( a – 1) = 0
2a – 1 = 0 and (a – 1) = 0
2a = 1 and a = 1 a = 1/2 and a = 1
Hence a = tanθ
tanθ = 1/2 and tanθ = 1
Answered by
27
1 + Sin² Ф = 3 sinФ cosФ
Multiply both sides by sec²Ф
sec² Ф + sin² Ф /cos² Ф = 3 sinФ / cosФ
1 + tan² Ф + tan²Ф = 3 tan Ф
2 tan² Ф - 3 tan Ф + 1 = 0
we can use factorization by factors : 2 X 1 => - 2 - 1 = -3
so 2 tan² Ф - 2 tanФ - tan Ф + 1 = 0
(2 tan Ф -1) (tan Ф - 1) = 0
tan Ф = 1/2 or 1
or by quadratic equation method:
tan Ф = [ 3 + - √(9 - 8)] / 4
= 1 or 1/2
Multiply both sides by sec²Ф
sec² Ф + sin² Ф /cos² Ф = 3 sinФ / cosФ
1 + tan² Ф + tan²Ф = 3 tan Ф
2 tan² Ф - 3 tan Ф + 1 = 0
we can use factorization by factors : 2 X 1 => - 2 - 1 = -3
so 2 tan² Ф - 2 tanФ - tan Ф + 1 = 0
(2 tan Ф -1) (tan Ф - 1) = 0
tan Ф = 1/2 or 1
or by quadratic equation method:
tan Ф = [ 3 + - √(9 - 8)] / 4
= 1 or 1/2
Similar questions
World Languages,
8 months ago
Biology,
8 months ago
Math,
8 months ago
Chemistry,
1 year ago
Math,
1 year ago