If 2^a=4^b=12^-c then ab+bc+ca=?
Answers
HELLO DEAR,
YOUR QUESTIONS IS--------------3^a = 4^b = 12^(-c)
GIVEN:-
3^a = 4^b = 12^(-c) = k(say)
3^a = k
taking log both sides,
alog3 = logk
a = logk/log3
log3 = logk/a ---------( 1 )
similarly, 4^b = k
taking log both sides,
blog4 = logk
b = logk/log4
log4 = logk/b -------------( 2 )
AND
12^(-c) = k
taking log both sides,
-clog12 = logk
-clog(3 × 4) = logk
-c{log3 + log4} = logk
from --------- (1) &-------- (2)
= -c{logk/a + logk/b} = logk
= -c{1/a + 1/b} logk = logk
= -c{(a + b/ab)} = 1
= -c{b + a} = ab
= -cb - ac = ab
= ab + bc + ca = 0
I HOPE ITS HELP YOU DEAR,
THANKS
Note : A small correction is needed. It should be 3^a instead of 2^a.
Given : 3^a = 4^b = 12^(-c).
Let 3^a = 4^b = 12^(-c) = k{Constant].
Then,
(1) 3^a = k
=> log(3^a) = log(k)
=> a log 3 = log k
=> a = log k/log 3.
= > log 3 = (log k/a) ----- (i)
(2) 4^b = k
=> log(4^b) = log(k)
=> b log 4 = log k
= > b = log k/log 4
= > log 4 = (log k/b) ------ (ii)
(3) 12^-c = k
=> log(12^-c) = log(k)
= > -c log 12 = log k
= > -c(log 3 * log 4) = log k [ log ab = log a + log b]
= > -c(log 3 + log 4) = log k
= > -c(log k/a + log k/b) = log k
= > -c(log k(1/a + 1/b)) = log k
= > -c(1/a + 1/b) = 1
= > -c(b + a) = ab
= > -cb - ca = ab
= > ab + bc + ca = 0.
Therefore, the final answer is 0. - Option(2).
Hope this helps!