If 2 positive integers p and q are written as p=a2b3 and q=a3b;a and b are prime numbers then verify:LCM(p,q) x HCF(p,q)=pq
Answers
Answered by
49
Given :
p = a^2b^2 and q = q^3b.
LCM (p, q) = a^3b^3
HCF (p, q) = a^2b
L.H.S = LCM (p, q) × HCF (p, q) = a^5b^4
= (a^2b^3) (a^3b)
= pq
LCM (p, q) × HCF (p, q) = pq
L.H.S. = R.H.S.
Proved !
Answered by
0
Answer:
Step-by-step explanation:
H.C.F.(p,q)=a^2b
L.C.M.(p,q)=a^3b^2
L.C.M.(p,q)×H.C.F.(p,q)=a^5b^3
pq=a^5b^3
Therefore, LCM (p,q)×HCF (p,q)=pq
Similar questions
Math,
7 months ago
Math,
7 months ago
India Languages,
7 months ago
Hindi,
1 year ago
Science,
1 year ago
Computer Science,
1 year ago